
A Review - LOOP Dependence Analysis for
Parallelizing Compiler

Pradip S. Devan1, R. K. Kamat2

1 Department of Computer Science, Shivaji University, Kolhapur, MH, India– 416 004
2Department of Electronics, Shivaji University, Kolhapur MH, India – 416 004

Abstract— Business demands for better computing power
because the cost of hardware is declining day by day.
Therefore, existing sequential software are either required to
convert to a parallel equivalent and should be optimized, or a
new software base must be written. However analyzing and
detection of healthy code snippet manually is a tedious task.
Loops are most important and attractive for parallelization as
generally they consume more execution time as well as
memory. The purpose of this paper is to review existing loop
dependence analysis techniques for auto-parallelization. We
present some technical background of data dependency
analysis, followed by a review of loop dependence analysis.
The review material focuses explicitly on dependence analysis
techniques, dependence tests and their drawbacks. We
conclude by discussing the nature of the review material and
considering some possibility for future.

Keywords— Compiler, Parallelization, parallel computing,
loop dependence analysis.

I. INTRODUCTION

Many of the industries had followed traditional
sequential programming before. Algorithms are constructed
and implemented considering sequential call flow; hence
only one instruction may execute at a time [1-4]. Parallel
programming seems to be the most logical way to meet the
current business demand. Therefore, existing traditional
sequential software are either required to convert to a
parallel equivalent and should be optimized, or a new
software base must be written. However, both options
require a skilled developer in dependence analysis.
Converting these software’s in multithreaded for parallel
computation increases the complexity and cost involved in
software development due to rewriting legacy code, efforts
to avoid race conditions, deadlocks and other problems
associated with parallel programming.

Some parallel languages such as SISAL [5] and PCN [6]
have found little favour with application programmers;
however industries prefer to use their traditional sequential
programs rather than learning a completely new language
only for parallel programming. In view of this, auto-
parallelization could be the best option to convert existing
traditional sequential software instead of doing it manually.

Many researchers have worked on the development of
automatic parallelization from different points of views.
There are several well-known research groups involved in
the development and improvement of parallel compilers,
such as Polaries, PFA, Parafrase, SUIF etc [4,7]. Most
research compilers consider FORTRAN programs only for
automatic parallelization. FORTRAN programs are simpler
to analyse as compared to C/C++ programs. Typical

examples are: Vienna FORTRAN, Paradigm, Polaris, SUIF
compilers. Compiler should be able to reorder the
sequential statements for parallelism exploitation. The
challenge for such a reorder is ensuring the changed order
always computes the same result for all possible inputs.

In particular, loops are a rich source of parallelism and
can be used to achieve considerable improvement in
efficiency on multiprocessors Therefore; we have reviewed
the existing data dependence tests and algorithm for loops
dependency. The review was conducted in order to locate
the available literature in this field and to isolate potential
research areas. The elements of data dependence
computation that we consider are limited explicitly to
methodologies, algorithms defined in different research
papers.

II. DEPENDENCE ANALYSIS

The sequential language introduced few constrains
which are not critical for preserving the computation.
Finding such set of constrains is key for transforming
programs to parallel one. Characterizing these constrains
allow the PC to reorder execution of a program without
changing its constraint. These constraints are called as
dependency.A set of dependency is sufficient to ensure that
program transformations do not change the meaning of
actualprogram. The same results are achieved by preserving
the relative order of the writes to each of the memory
location in the program.

Compilers will have the ability to analyze the tasks that
can be safely and efficiently executed in parallel. The code
can be executed parallel in case there is no dependency in
between execution path. Dependence is a relation in
between the statements of program. Statement S2 is said to
be dependent on S1 (S1 δ S2); if S1 must be executed
before S2 to produce correct output. Dependence analysis
[8,9] distinguishes between two kinds of dependence: data
dependence and control dependence.
A. Data dependency:

Two statements are called data dependent whenever
the variables used by one statement may have incorrect
values if the statements executes in reverse order. For
example; statement S2 has data dependence on statement
S1 in following segment because of AREA

S1: AREA=PI*R*2
S2: VOLUME=AREA *H

B. Control dependency:
 Execution of one statement depends on result of
other condition. Relations of control dependencies
describe the control structure of a program [10, 11]. For

Pradip S. Devan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4038-4046

www.ijcsit.com 4038

example: the execution of S2 is depending on the result
of statement S1.

S1: If(A!=0) {
S2: B=B/A;
S3: }

Both data as well as control dependency should be taken
care by compiler while parallelizing any program. Data
decomposition, where parallel tasks perform similar
operations on different elements of the data array could be
highly effective technique for parallelizing program. The
dependence can be classified [12] into:

1) True dependence: S1 writes and then S2 reads from

same memory location (RAW) denoted as S1 δ S2
2) Anti-dependence: S1 reads and then S2 writes at

same memory location (WAR) denoted as S1 δ
- S2

3) Output dependence: Both S1 and S2 write at same
memory location (WAW) denoted as S1 δo S2

4) Input dependence: S1 reads memory andS2 later
reads (RAR) the same which is denoted as S1 δi S2

Consider below statements which have execution path
in sequential order as a dependence classification
example.

S1: a=b;
S2: b=c+d;
S3: e=a+d;
S4: b=f*4;

The variable of each statement “variable = expression”
holds the result of the statement and hence it acts as its
output, while the variables in the expression are the input
of the statement.

Fig 1 Shows the dependency between S1, S2, S3 and S4.

In Figure 1, the output variable of S2 (b) is being used

by statement S1 as an input variable; hence S2 is anti-
dependent on S1 (i.e. S1 δ

- S2). The variable (b) is
utilized in S2 and S4 statements. Value of (b) will be f*4

after execution of S4 in sequential execution. The value
of (b) is determined by the execution order of S2and S4:
if S4 is executed before S2, the final value of (b) will
change, hence S4 is said to be output dependent on S2

(i.e. S1 δo S2). S2 and S3 are reading same variable (d);
hence S3 is said to be input dependent on S2. (i.e. S2δi
S3) Output variable (a) of S1 is being used in statement
S3 as an input; hence S3 is true dependent on S1 (i.e. S1
δ S3)

III. LOOP DEPENDENCE

Loops execute statements multiple times in a regular
computation and it often contains array variable. Loops
are very attractive for parallelization as generally they
consume more execution time as well as memory.
Detecting such loop dependencies and applying automatic
transformation is a complex task. To achieve this, we
need a powerful mathematical model which helps the
compilers to detect dependencies and transform the input
in parallel form.

The next section lists some of the terms which form
mathematical base for dependency analysis.
1) Iteration vector: It represents a particular
execution of statements by setting an entry of a vector to
the value of the corresponding loop induction variable.
2) Iteration space: It is a set of all possible
iteration vectors for a statement.
3) Distance vector: It indicates the distance
between iterations, denoted by σ
4) Direction vector: It indicates the corresponding
direction, basically the sign of the distance, denoted as ρ

The best way to build an understanding for these
mathematical terminologies is to start with a simple
example. Consider the following loop:

for (i=1;i<=3;i++) {
for (j=1;j<=3;j++) {

S A(i,j)=A(j,i);
}
}

Iteration space [13] for above loop is {(1,1), (2,1),
(2,2),(3,1), (3,2), (3,3) }. Iteration number can be
calculated by using below formula:
 i = (I– L+1)/S, i= iteration number
 I = value of index on that
iteration
 L= Lower bound
 S= steps.

The lexicographic order of two iteration vectors can be
succinctly summarized using distance vector and direction
vectors [14].

Distance vectors [14] were first used by Kuck and
Muaoka in [12, 15]. It describes dependences in between
iterations. They are very crucial to determine whether loop
can be executed in parallel or not. If two iteration vectors i
(is the source of dependence) and iteration vector j (is the
sink of the dependence) represents of dependent statements
(S1 δ S2) in nested loop; then the distance vector (i,j) is
defined as vector of length such that:
d(i,j)k= jk - ik

Output

S1

anti

True

anti

Input

 b=c+d

a=b

e=a+d

 b=f*4

S2

S3

S4

Pradip S. Devan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4038-4046

www.ijcsit.com 4039

Direction vectors were first introduced by Wolfe[16].
It is closely related to distance vector and are useful for
calculating the level of loop carried dependences [17, 18].
They are mapped into direction vectors such that:

“<” if d(i,j)k> 0

D(i,j)k = “=” if d(i,j)k = 0
“>” if d(i,j)k< 0 where d(i,j)k = jk - ik

Direction vector whose leftmost non “=” component is

not “<”; it means dependence doesn’t exist. It indirectly
express that the sink of the dependence occurs before the
source. In some cases a direction vector or distance vector
alone may be insufficient to completely describe
dependence and so both distance and direction vector may
be required. Consider the following example:

for (i=1;i<=4;i++) {
 for (j=1;j<=i;j++) {

S A(I+1,J) = ...
 ... = A(I,J)

 }
}

Find the details of iteration vectors and their
dependence relations for above example in TABLEI and
TABLE III below:

TABLE III

Iteration Vector (I,J) S1 S2

(1,1) A(2,1) A(1,1)

(2,1) A(3,1) A(2,1)

(2,2) A(3,2) A(2,2)

(3,1) A(4,1) A(3,1)

(3,2) A(4,2) A(3,2)

(3,3) A(4,3) A(3,3)

(4,1) A(5,2) A(4,1)

(4,2) A(5,1) A(4,2)

(4,3) A(5,2) A(4,3)

(4,4) A(5,4) A(4,4)

TABLEII

S1δ S2 Array Element

S1(1,1) δ S2(2,1) A(2,1)

S1(2,1) δ S2(3,1) A(3,1)

S1(2,2) δ S2(3,2) A(3,2)

S1(3,1) δ S2(4,1) A(4,1)

S1(3,2) δ S2(4,2) A(4,2)

S1(3,3) δ S2(4,3) A(4,3)

Arrays from TABLEIV are dependent on each other.
Dependence vector for above example is (1, 0) and
direction vector is (<, =).

Loop dependence can be further classified as either
loop-independent or loop-carried, depending on whether it
exists independently of any loop inside of which it is nested.
Loop-independent flow dependence does not inhibit any
parallelization of the outer loops because it will still be
satisfied. Loop-carried dependences may inhibit
parallelization because the simultaneous execution of
different iterations may leave them unsatisfied.

1) Loop Carried dependence:

Loop carried dependence is a dependence that arises
because of the iteration of loops. Statement S2 has a loop-
carried dependence on statement S1iff S1 and S2 has
execution path and they refer to memory location M on
their respective iteration i and j, where i>j. Consider
below C code snippet for details:

for (i=2;i<=4;i++){
S1: a(i+1)= ...
S2: ...=a(i)

 }
If statement S2 appears before S1 within same loop or

both S1 and S2 are same statements; then that loop-carried
dependence is called as backward. If S2 appears after S1

within loop then that loop carried dependence is called as
forward.

 “Level” of dependence is an important factor of loop
carried dependence. Dependence level conveniently
summarizes dependences and is useful for reorder
transformation. Reorder transformation just changes the
execution order of execution code, without any change in
actual statements. It doesn’t eliminate dependences,
however, it can change the ordering of the dependence e.g.
change from true to anti-dependence or vice versa

Fig 2- Shows the relations between S1 and S2 for each iteration and their dependences. S1 is the source and S2 is the sink of the
dependence. S1 and S2 always execute in different iteration and they always have negative dependence vector i.e. (“<.”).

a(4a(5) a(3) a(4) a(2) a(3)

i=2
S1[2] S2[2]

i=3
S1[3] S2[3]

i=4
S1[4] S2[4]

Pradip S. Devan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4038-4046

www.ijcsit.com 4040

level of a loop-carried = index of the leftmost non “=” of
D(i,j).
The level of dependences in,

for(i=1;i<10;i++) {
 for(j=1;j<10;j++) {

for(k=1;k<10;k++) {
 S1 A(i,j+1,k) = A(j,j,k)

}
 }
}

is 2 because D(i, j) is (=,<,=)for every i, j that creates a
dependence.

2) Loop independent dependence:

It arises as a result of relative statement position.
Thus, loop-independent dependences determine the order
in which code is executed within a nest of loops.
Statement S2 has a loop-independent dependence on
statement S1 if and only if S1 and S2 has execution path
within iteration and they refers memory location M on
their respective iteration i and j where i=j. Dependence
vector is always 0 for loop-independent dependence.
Consider below C code snippet for details:

for(i=2;i<=4;i++){
S1: a(i)=...
S2: ... =a(i)

}

IV. DEPENDENCE TESTING

Dependence testing is the method used to determine
whether dependences exist between two subscripted
references to the same array in a loop nest [19]. Loops are
main source of the parallelism in any program and precise
data dependence information is necessary to detect
parallelism. Dependence testing is done in pairs to discover
data dependences between iteration of nested loops.
Dependence exists if any two iterations of the loop access
same array with same subscript (i.e. the same memory
location). First step of dependence testing is to partition
subscripts according to their complexity, and test
accordingly.

1) Partition Based Algorithm

a. Partition the subscript S into m separable and
minimal coupled groups S1, S2, ...Sm for a single
reference pair enclosed in n loops with indexes I1, I2, ...
In.

b. Label each subscript as ZIV, SIV or MIV
c. For each separable subscript, apply the appropriate
single subscript test (ZIV, SIV, MIV) based on the
complexity of the subscript. If independence is proved,
no further testing is needed else it will produce
direction vectors for the indexes occurring in that
subscript.

d. For each coupled group, apply a multiple subscript test to
produce a set of direction vectors for the indices
occurring within that group

i) If any test yields independence, no dependences
exist.

ii) Otherwise merge all the direction vectors
computed in the previous steps into a single set of
direction vectors for two references.

iii) This algorithm is implemented in both
PFC, an automatic vectorizing and parallelising compiler,
as well as ParaScope, a parallel computing environment
[20,21,22].

2) Merging Direction Vector:

The merge operation is simply a Cartesian product of
direction/distance vectors produced by individual tests. Let
us see in the below example:

for (i=0; i<N; i++) {
 for (j=0; j<N; j++) {

 S1 A (i+1, 4) = ...
 S2 ... = A (i, N);

 }
}

The first partition subscript (i+1, i) yields the direction
vector (<) for the loop with index i. second partition
subscript (4, N) doesn’t have j index and N doesn’t
indirectly vary with j and hence the full set of direction
vectors (*) [8] needs to be assumed. The direction vector
for i and j yields the set of direction vectors {(<, <), (<, =),
(<, >)}, or {(<, *)}. If one of the dependence test proves to
be independence; merge is not necessary, since overall
result is independence.

V. DATA DEPENDENCE TESTS

Once subscript partition is done; specific tests can be
applied to determine whether dependence exists or not.
Most of the dependence tests are assumed that there is data
dependence exist in program if independence can’t be
proved. In this way, produced parallel code can’t guarantee
about safe parallelization.

Fig 3- Shows the relation between source and sink for each iteration. S1 is the source of the dependence; S2 is the sink. S2 is always
dependent on S1 in the same iteration. The number of iterations between source and sink is 0.

a(4) a(4) a(3) a(3) a(2) a(2)

i=2
S1[2] S2[2]

i=3
S1[3] S2[3]

i=4
S1[4] S2[4]

Pradip S. Devan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4038-4046

www.ijcsit.com 4041

These dependence tests are classified on the subscript basis.
I) Single-subscript dependence tests:

Simplest test cases are available; that can be applied on
single subscripts. Some of them are discussed in below
section:
1) ZIV test:

ZIV (zero index variable) subscript does not vary
within any loop and hence if two expressions are not equal
then the corresponding array references are independent. If
independence cannot be proven, the subscript does not
produce any direction vectors, and may be ignored. For
example:

for (j=1; j<10; j++) {
S A[a1] = A[a2] + B[j]

}
a1, a2 are constants or loop invariant symbols. If (a1-a2)! =0,
it means Dependence doesn’t exists
2) Strong SIV Test:

Subscript for an index i is said to be strong if it has the
form <ai + c1, ai' + c2>. Since the loop coefficients are
identical for each reference, a strong SIV pair maps into a
pair of parallel lines. Access to common elements will
always be separated by the same distance in terms of loop
iterations. This dependence distancecan be calculated by the
following:

d= i'-i= (c1-c2)/a
Dependence exist if d is an integer and |d|<= U-L
Let us understand below example:

for (i = 1;i<N;i++){
S1 A[i+2*N] = A[i+N] + C

}
The dependence distance d as (2N-N)/1 which

simplifies to N and U-L equal to (N-1). Here N> N-1 and
hence |d| > U-L. This proves there is no dependence.

3) Weak-zero and weak-crossing SIV Tests:

Subscript for an index i is said to be weak if it has the
form <a1i + c1, a2i' + c2>. It always has different coefficient
where the dependence equation is a1i + c1= a2i' + c2. If one
of the coefficient is 0 (i.e. a1=0 or a2=0), the subscript is a
weak-zero SIV subscript. If a2=0; then dependence equation
reduces to i= (c2 - c1)/ a1. In this case, the dependence is
usually caused by first or last iteration that may be
eliminated by loop peeling [23 - 26]. If one coefficient has
exact negative value of other (i.e. a1= -a2), then the
subscript is weak-crossing SIV test and dependence
equation will be i= (c2 - c1)/ 2a1. This dependence may be
eliminated by the loop splitting transformation [23 - 26].

II) Multiple Induction Variable Tests:
SIV subscripts are relatively simple linear mapping from

the Z(the set of natural numbers) to Z in single loop;
however MIV subscripts are much complicated as we have
to do mapping from Zm to Z, where m is the number of
loop induction variables appears in the subscripts. This
added complexity requires sophisticated mathematics in
order to accurately determine dependences. The test for
MIV subscripts are
1) Delta Test

The “Delta test” [27,28] derives from the informal usage
of ΔI to represent the distance between source and sink

index of I-loop. The main idea behind this test is constraints
derived from SIV subscripts may be efficiently propagated
into other subscripts in the same coupled group without
losing any precision.

The delta test can find independence if any of its ZIV or
SIV tests determine independence. If no independence is
found using the ZIV and SIV tests then the delta algorithm
converts all SIV subscripts into constraints, and propagated
into MIV subscripts. If the propagation process results with
new SIV subscripts, then the conversion is repeated until no
new SIV subscripts are produced.

Next, MIV subscripts are scanned for RDIV (Restricted
Double Index Variable) subscripts. RDIV subscripts have
form {aj*ij + cj, ak*ik + ck}, and are similar to SIV
subscripts, except that ij and ik are distinct indices. Testing
the RDIV subscripts produces new constraints, which are
then propagated into remaining MIV subscripts.

At the end, remaining MIV subscripts are tested
subscript-by-subscript, possibly resulting in false
dependences. Described procedures are performed by the
Delta test algorithm [18]
2) Symbolic Test:

This test is important to deal with symbolic quantities
for resolving data flow dependencies, which appear
frequently in subscripts. The difference between loop-
invariant symbolic additive constant (c2-c1) can be
symbolically formed and simplified. The result of this
simplification can then be used like a constant in order to
break possible dependencies. This test can be applied on the
following pair of loops which are dealing with two array
references.

for (i = 1;i<N1;i++){
S1 A(a1 *i+ c1) = ……

}

for (j = 1;j<N2;j++){

S2 …… = A(a2 *j+ c2)
}

Based on above pair of loop, dependence exists if the
following dependence equation is satisfied for some value
of i (1 <= i<=N1) and j (1 <= j <=N2). (Assuming a1 is
greater than or equal to zero).
a1 *i - a2 *j = c2 - c1

Below two possible cases can be considered in this test:
a) a1 and a2 may have same signs.
As a1 and a2 are non-negative, (a1*i – a2*j) assumes its

maximum value for i= N1 and j=1 and minimum value for
i=1 and j= N1; so the dependence exist iff:

a1 - a2N2 <= c2 - c1 <= a1N1 - a2
b) a1 and a2 may have different signs.
As a2 is negative (remember we are assuming a1 is

greater or equal to 0), (a1*i – a2*j) assumes its maximum
value for i= N1 and j= N2 and minimum value for i=1 and j=
1; so the dependence existsiff:

a1 - a2<= c2 - c1 <= a1N1 - a2N2

3) The Banerjee -GCD Test:
The Banerjee test [29] is based on intermediate value of

theorem [30, 31], states that the function takes all
intermediate values between a minimum and a maximum if

Pradip S. Devan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4038-4046

www.ijcsit.com 4042

they are identified by the function. For example – if
equation (a0 + a1 *X = b0 + b1*X’) for some integer X and
X’; then (a1 *X - b1*X’) = b0 - a0. In this case (b0 - a0)
should be between upper bound (i.e a1 *max(X) - b1*
min(X’)) and lower bound (i.e. a1 *min(X) - b1* max(X’))
of given equation.

The Banerjee test requires the loops with constant
bounds and also considers if statement conditions and does
not analyse non-linear expressions. This test case assumes
that all indices are independent; therefore if test fails to
prove the same then this test does not guarantee that
dependence really exists. In this extreme case GCD test can
be applied.

The GCD (greatest common divisor) test [32] is based
upon a theorem of elementary number theory, which states
that a linear equation (a1x1 +a2x2 + ... + anxn= a0) has an
integer solution iff the gcd of the coefficients on the left-
hand side of the equation (a1,a2,… an) divides the right
hand side constant(a0) [33]. For example – linear equation
(3x + 5y = 20), the gcd of the coefficients on the left-hand
side of the equation (i.e. gcd(3,5)) =1 divides right hand
side constant (20), it means the given linear equation may
have integer solution.

Besides ignoring loop bound, the GCD test also doesn’t
provide distance and direction information. Also GCD is
often 1, which ends up being very conservative.

4) The I-Test

The I-Test [34, 35], is an enhancement of Banerjee and
GCD test which extends the range of applicability as well
as the accuracy. The I-Test is based on the observation that
most of the real solution is predicted by Banerjee test. It
leads the development of set of conditions, which
determines the integer value between minimum and
maximum values for liner expression by using Banerjee test.
These accuracy conditions [36] states the relationship
between the coefficients of loop index variables and the
range of values they realize, in order to guarantee that every
integer value between the extreme values is achievable.The
I-Test is based on the notion of the integer interval equation:

a1 *X1 + a2 *X2 + a3 *X3 +…. an *Xn= [L, U] EQ-1

wherePk<= Xk<= Qkfor 1<=k<=n

An integer interval equation is used to denote the set of
all ordinary linear equations with constantterms the integers
between L and U. It has an integer solution iff at least one
of the equation in the set has an integer solution, subject to
the constraints. The equation and constraints in EQ-1 are
equivalent to
a1*X1 + a2*X2 + a3*X3 +…. an*Xn= [a0,a0] EQ-2

where a0 is divisor by gcd(a1, a2 .. an)

The I-Test is applied starting on EQ-2. This equation is
(P1,Q1;P2,Q2…. Pk,Qk)-integer solvable iff the interval
equation
a1*X1 + a2*X2 + a3*X3 +…+an-1*Xn-1 = [a0–a+

n*Qk+a-

n*Pk,a0– a+
n*Pkk+a-

nQn] EQ-3

where Pk<= Xk<=Qkfor 1<= k <= n-1

 a+= a if a>0 otherwise 0
a- = a if a<0 otherwise 0

is integer solvable. The above is applied until there are no
terms on the left side or the GCD test indicates that there
may be a solution for interval equation. If the integer
interval on the right-hand side includes zero, then a solution
exists, otherwise there is no integer solution subject to the
constraints.

Also if d= gcd (a1, a2 ..an); then the constraint interval
equation in EQ-1 is integer solvable iff the constrained
interval equation:
a1/d1*X1 + a2/d2*X2 + a3/d3*X3 +…. an/dn*Xn= [L/d,U/d]
 EQ-4
wherePk<=Xk<=Qkfor 1<=k<=n

The I-Test inherits all of the benefits of the Banerjee test,

including efficiency and ability to provide direction vector
information. Similarly to the Banerjee test I-Test requires
constant loopbounds and can be applied only to linear
subscript.

5) The Omega Test:

Omega Test [37] is an exact dependence and based on a
combination of least remainder algorithm and Fourier-
Motzkin variable elimination (FMVE) [26] where
additional extension tests of FMVE can guarantee the
existence of integer; however has worst case exponential
time complexity. The input of the Omega test is a set of
equalities and inequalities resulting from the subscript
expressions, the iteration index bounds or the if-statement
conditions; hence derivation of Knuth's [20] least remainder
algorithm is used to convert these inputs into linear
inequalities. GCD test and bound normalizations are
applied to detect if the system is inconsistent during this
initial conversion. In such cases, the test reports no
dependence exists, otherwise an extension to standard
FMVE is used to determine if converted linear equalities
has integer solution. The variable elimination is performed
on pairs of inequalities using FMVE techniques. If the
resulting “real shadow” contains no integers, then the
original object contains no integer, and the test reports that
no solution exists. However it’s not necessarily true that the
real shadow may contain integers, whereas, the original
object actually contains no integers; hence Omega test
calculate the subset of the real shadow called “dark
shadow”. It represents the area under the original object
where integer solution definitely exists. If it contains
integers, then the Omega Test reports that dependence exist.
But the same time if dark shadow is empty and real shadow
is non-empty, Omega Test begins exhaustive search of the
solution space, recursively generating and solving integer
programming problem until integer solutions are either
found or disproved.

6) The Range Test:

The Range test [38] came up from need to address the
issue of non-linear expression. Many of them are due to the
actual source code and other are while due to complier
transformations, especially induction variable recognition
[39]. The traditional dependence analysis techniques

Pradip S. Devan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4038-4046

www.ijcsit.com 4043

cannot expose parallelism for these non-linear expressions
[40].

The Range Test assumes that dependence exists and it
always tries to disprove dependences. For a given iteration i
of a loop L, the accessed array subscript range, range(i), is
considered as symbolic expression; if this range doesn’t
overlap with the range accessed in next iteration, i+1, then
there is no dependence for L. The two ranges do not overlap
if max(range(i)) <min(range(i+1)). The Range Test
disproves carried dependences between A(f(i)) and A(g(j))
for a loop L, by proving that the range of elements taken by
f and g do not overlap.

DISCUSSION AND CONCLUSION

In this review, we have concentrated on loop
dependence analysis for optimization and
parallelization.Data dependence analysis is the key to
optimization and detection of implicit parallelism in
sequential programs. Loops are most important and
attractive for parallelization as generally they consume
more execution time as well as memory. Dependence
analysis for loop can be done by using a set of distance and
direction vectors. They describe dependences between loop
iterations which are necessary to discover the parallelism in
a program. Hence, we have explained the data dependence
techniques in details for interested readers.

The review material demonstrates the data dependence
analysis techniques and most of the dependence tests which
can be applied to detect loop dependence. All tests are not
suitable for all loops. Still there is some scope to improve
some of dependence tests. Each data dependence test has its
own limitation and restriction; so different output may arise
for same problems due to different reasons. The ultimate
goal of this work is to understand and improve available
mathematical models of data dependency analysis.
Designer should consider all cases related to data
dependence accuracy, efficiency of generated code during
transformation of existing source code. We have discussed
such issue and their respective solutions as below:
1) Loop Variant Variable

The values of loop variant variables are generally
changed inside the loop nest which depends on the values
of the enclosing loop indices. Compiler techniques such
as induction variable substitution [43], can recognize
variables which can be expressed as functions of the
indices of enclosing loops and replace them with
induction variables with the expressions involving loop
indices. The transformation should make the relationship
between variables and loop indices explicit; however such
transformation may not always bepossible; but at the
same time dependence test may be able to resolve
problems with loop variant accurately. Consider below
example:

for (I = 1; I<= N; I++) {
 for (J = 1; J<= M[I]; J++) {

S1: A[I, K + J] = ...
S2: . . . = A[I, K + J + 1];
 }
 K=2*K;

}

Here value of array M[I] and K will change inside the
loop nest. The value of changes in each iteration of I;
however it remains same for each iteration of J. So the level
of variance for these two variant variables is the level of
loop I and hence loop variant expression can be
determining the innermost loop. All occurrences of that
expression for direction vector is of the form (=, >) for all
level of variance. This technique can help to check whether
loop variant variable is equal in dependence problem and
can be simplified algebraic operations and can be
incorporated in dependence test.

2) Non-Linear Expressions:

Most of the test cases discussed in above part
including Banerjee test, I-test and Omega test focused on
dependence analysis for linear expressions otherwise non-
linear expression treat as a variant variable. Dependence
test such as Range test can analyze any type of non-linear
expression using ranges. Consider below example:

for (I=1; I<=N; I++) {
S1: A[I*N+1] = ...
S2: . . . = A[I];

}
In above example the first subscript of array A has

non-linear term I*N and will have always the value
greater than N+1. Value of second subscripts is always
less than N and hence it always less than value of first
subscript; therefore no dependence exists. So dependence
test can be enhanced by adding this check instead of
simply ignore non-linear constraints and very often loose
in accuracy.

3) If-Statement Conditions:

Generally, If condition is hard to handle while data
dependence analysis. I-Test and Banerjee test deals with
if-statements by examining the conditional variables. If
these conditional variables are not updated inside the loop,
then dependence test can simply ignore them without
introducing an approximation; even if the two references
for same array belongs to the if-part and else-part
respectively since only one of them executes for all loop
iterations. The Omega test can handle if statements as it
handles all linear integer constraints.

for (I=1; I<=N; I++) {
if(I<5)

S1: A[I] = ...
} else {

S2: ... = A[I];
}

Most of the dependence tests including Banerjee test, I-
Test and the Range test ignoresthe if (I<5) condition and
reports may be answer. On the other hand, Omega test is
able to disprove the dependence in this case.

4) Coupled Subscripts:

Data dependence tests such as Banerjee test, the I-
Test and the Range test rely on subscript by subscript
testing for multidimensional arrays with coupled
subscripts. Consider the following example:

Pradip S. Devan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4038-4046

www.ijcsit.com 4044

for (I=1; I<=N; I++) {
S1: A[I,I] = ...
S2: ... = A[I,I+1];

 }
In the above example, subscripts are coupled and

subscript-by-subscript testing will indicate possible
dependence when no dependence exists. Even though the
subscripts are coupled, for all (=,*) direction vectors the
equation do not share the common variables and hence
dependency does not exist. I-test is able to prove the
dependency. Thus, coupling between dependence equations
should be checked for every direction vector. Coupled
subscripts do not introduce an approximation in the Omega
test, since it takes all equation into consideration at once
.
5) Complex Loop Bounds:

Many data dependence tests, including Banerjee test,
the I-Test assumes that lower bound and upper bound have
a constant values; however in practical bound could be
expression of other loop indices or other symbolic variables.
Consider following example:

for (I=1; I<=100; I++) {
 for (J=1; J<=I+1; J++)
{

S1: A[I+J] = ...
S2: . . . =
A[I+J+1];
 }
}

In above example; upper bound of inner loop will
varyfor each iteration of outer for loop. The upper bound of
J will have max value as 101 which is equal to the extreme
value of expression I+1. This approximation is better than
assuming that the bound is infinity where dependence test
failed to prove independence in this case.

Symbolic variables, if it’s not used anywhere in loop,
then it can be safe to assume its value is either minus or
plus infinity depending on whether it is a lower or an upper
bound respectively. Consider the following example:

for (I=1; I<=N; I++) {

S1: A[I] = ...
S2: ... = A[I+20];

}
The variable N doesn’t used for any other constraints,

the bound of I can be considered to have an exact state and
value plus infinity and can be replaced by large constant. If
the dependence exists for that constant then there exists
dependence for a value N and vice versa. Since this
constant is very large, we can safely believe that same result
will be produced with N.

6) Testing for Integer Solutions:

Data dependence tests such as Banerjee test and Range
test cannot prove the dependence in case of integer solution.
Also I-Test can prove integer solution if it’s a set of
conditions, called accuracy conditions is satisfied. If the
accuracy condition of I-Test fails, then ”Omega test

nightmare” [41] is inevitable [42]. The Omega test always
tests for integer solutions.

for (I=1; I<=10; I++) {

S1: A[I+1] = ...
S2: ... = A[11*I-10];

}
In above example, Banerjee test and the Range test

fail to disprove the existence of an integer. These tests
will return a false positive “maybe” answer. Both the I-
Test and the Omega test are able to disprove the
dependence in this case.

REFERENCES
[1.] B. Barney, “Introduction to Parallel Computing”, Lawrence

Livermore National Laboratory, California, USA,
(2012).http://www.llnl.gov/computing/tutorials/parallel_comp/

[2.] I. Foster, “Designing and Building Parallel Programs", Addison-
Wesley Inc., USA (1995)http://www-unix.mcs.anl.gov/dbpp/

[3.] A. J. van der Steen, and J. J. Dongarra. "Overview of Recent
Supercomputers"National Computer facilities Foundation,
Netherlands Organisation for Scientific Research (NWO), Netherland
(2009) www.phys.uu.nl/~steen/web03/overview.html

[4.] F. Corbera, R. Asenjo and E. Zapata. “Accurate Shape Analysis for
Recursive Data Stuctures” Languages and Compilers for Parallel
Computing, Lecture Notes in Computer Science Volume 20(17), pp.
1-15, (2001)

[5.] J. Feo, D. Cann, and R. Oldehoeft. A Report on the SISAL Language
Project. Journal of Parallel and Distributed Computing, vol 10, pages
349-366, 1990.

[6.] I. Foster and S. Tuecke. Parallel Programming with PCN. Technical
Report ANL-91/32, Argonne National Laboratory, Argonne,
December 1991.

[7.] J. Hoeflinger and Y. Paek "The Access Region Test", Proceedings of
the 12th International Workshop on Languages and Compilers for
Parallel Computing pp. 271-285 (1999)

[8.] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua.
“Automatic program parallelization”. Proceedings of the IEEE, Vol.
81(2) pp. 211-243, February (1993).

[9.] M. Wolfe. “High Performance Compilers for Parallel Computing”.
Addison-Wesley, (1996).

[10.] U. Banerjee. “Speedup of Ordinary Programs”. Ph.D. thesis,
Department of Computer Science, University of Illinois, Urbana-
Champaign (1979).

[11.] R. A. Towle. “Control and Data Dependence for Program
Transformations”. PhD thesis, Department of Computer Science,
University of Illinois, Urbana-Champaign (1976).

[12.] D. Kuck, The Structure of Computers and Computations, Volume 1,
John Wiley and Sons, New York, NY, 1978.

[13.] L. Lamport. “The coordinate method for the parallel execution of
iterative {DO} loops”. Technical Report CA-7608-0221, SRI, Menlo
Park, CA, (1981).

[14.] M. J. Wolfe. “Techniques for improving the inherent parallelism in
programs”. Master’s thesis, Department of Computer Science,
University of Illinois, Urbana-Champaign, (1978).

[15.] M.J. Wolfe, Optimizing Supercompilers for Supercomputers, PhD
thesis, Dept. of Computer Science, University of Illinois at Urbana-
Champaigne, October, 1982.

[16.] J.R. Allen, Dependence Analysis for Subscripted Variables and Its
Application to Program Transformations, PhD thesis, Rice
University, April 1993.

[17.] J.R. Allen, K. Kennedy, Automatic translation of Fortran programs
to vector Form, ACM Transactions on Programming Languages and
Systems, October 1987.

[18.] Y. Muraoka, Parallelism Exposure and Exploitation in Programs,
PhD thesis, Dept of Computer Science, University of Illinois at
Urbana-Champaigne, February 1971.

[19.] G. Goff, K. Kennedy, and C-W. Tseng. “Practical Dependence
Testing”. Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 15-29,
(1991).

Pradip S. Devan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4038-4046

www.ijcsit.com 4045

[20.] K. Kennedy, K.S. McKinely, C. Tseng, Analysis and transformation
in the ParaScope Editor, IEE Transactions on Parallel and Distributed
Systems, July 1991.

[21.] D. Callahan, K. Cooper, R. Hood, K. Kennedy, ParaScope: A
Parallel Programming Environment, The international Journal of
Supercomputer Applications, Winter 1988.

[22.] K. Kennedy, K.S. McKinely, C. Tseng, Interactive Parallel
Programming Using the ParaScope Editor, IEE Transactions on
Parallel and Distributed Systems, July 1991

[23.] D. Bacon, S. Graham and O. Sharp. “Compiler Transformations for
High-Performance Computing”. ACM Computing Surveys, vol.
26(4), pp. 345-420, (1994)

[24.] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer
Academic Publishers, (1988).

[25.] M. Burke, and R. Cytron. “Interprocedural Dependence Analysis and
Parallelization”, Proceedings of the SIGPLAN Symposium on
Compiler Construction, pp. 162-175, (1986).

[26.] C. Eisenbeis, and J. C. Sogno. “A General Algorithm for Data
Dependence Analysis”. Proceedings of the International Conference
on Supercomputing, pp. 292-302, (1992).

[27.] Z. Li, P.Yew, C. Zhu, Data dependence analysis on multi-
dimensional array references, Proceedings of the 1989 ACM
Internaional Conference on Supercomputing, Crete, Greece, June
1989.

[28.] D. Wallace, Dependence of Multi-dimensional Array References,
Proceedings of the Second International Conferences on
Supercomputing, July 1988.

[29.] U. Banerjee, “Dependence Analysis”, Kluwer Academic Publishers,
Norwell, MA, 1997.

[30.] Douglas A, “Essentially follows Clarke” (1971). Foundations of
Analysis. Appleton-Century-Crofts. p. 284.

[31.] Grabiner, Judith V. (March 1983). "Who Gave You the Epsilon?
Cauchy and the Origins of Rigorous Calculus". The American
Mathematical Monthly (Mathematical Association of
America) 90 (3): 185–194. doi:10.2307/2975545. JSTOR 2975545

[32.] U. Banerjee. “Data dependence in ordinary programs” Master Thesis,
Univ. of Illinois, Urbana-Champaign, (1976).

[33.] D. Knuth, “The Art of Computer Programming”, Vol. 2,
Seminumerical Algorithms, Addison-Wesley, (1981).

[34.] X. Kong, D. Klappholz, and K. Psarris, “The I-Test: An Improved
Dependence Test for Automatic Parallelization and Vectorization,”
IEEE Transactions on Parallel and Distributed Systems, Vol. 2, No. 3,
July 1991.

[35.] K. Psarris, X. Kong, and D. Klappholz, “The Direction Vector I
Test,” IEEE Transactions on Parallel and Distributed Systems, Vol. 4,
No. 11, November 1993.

[36.] K. Psarris, D. Klappholz, and X. Kong, “On the Accuracy of the
Banerjee Test,” Journal of Parallel and Distributed Computing, Vol.
12, No. 2, June 1991.

[37.] W. Pugh, “A Practical Algorithm for Exact Array Dependence
Analysis,” Communications of the ACM, Vol. 35, No. 8, August
1992.

[38.] W. Blume and R. Eigenmann, “Nonlinear and Symbolic Data
Dependence Testing,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 9, No. 12, December 1998.

[39.] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T.
Lawrence, J. Lee, D. A. Padua, Y. Paek, W. M. Pottenger, L.
Rauchwerger and P. Tu, “Parallel Programming with Polaris,” IEEE
Computer, Vol. 29, No. 12, December 1996.

[40.] R. Eigenmann, J. Hoeflinger, and D. Padua, “On the Automatic
Parallelization of the Perfect benchmarks”, IEEE Transactions on
Parallel and Distributed Systems, Vol. 9, No. 1, January 1998.

[41.] M. E. Wolf, “Beyond Induction Variables”, ACM SIGPLAN ’92
Conference on Programming Language Design and Implementation,
pp. 162-174, San Francisco Cal, June 1992

[42.] D. Niedzielski and K. Psarris, “An Analytical Comparison of the I-
Test and Omega Test,” Proceedings of the Twelfth International
Workshop on Languages and Compilers for Parallel Computing, San
Diego, CA, August 1999.

Pradip S. Devan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4038-4046

www.ijcsit.com 4046

